Matrix identities on weighted partial Motzkin paths
نویسندگان
چکیده
We give a combinatorial interpretation of a matrix identity on Catalan numbers and the sequence (1, 4, 4, 4, . . .) which has been derived by Shapiro, Woan and Getu by using Riordan arrays. By giving a bijection between weighted partial Motzkin paths with an elevation line and weighted free Motzkin paths, we find a matrix identity on the number of weighted Motzkin paths and the sequence (1, k, k, k, . . .) for k ≥ 2. By extending this argument to partial Motzkin paths with multiple elevation lines, we give a combinatorial proof of an identity recently obtained by Cameron and Nkwanta. A matrix identity on colored Dyck paths is also given, leading to a matrix identity for the sequence (1, t + t, (t + t), . . .).
منابع مشابه
Identities from Weighted Motzkin Paths
Based on a weighted version of the bijection between Dyck paths and 2-Motzkin paths, we find combinatorial interpretations of two identities related to the Narayana polynomials and the Catalan numbers. These interpretations answer two problems posed recently by Coker. AMS Classification: 05A15, 05A19
متن کاملIdentities from Weighted 2-Motzkin Paths
Based on a weighted version of the bijection between Dyck paths and 2-Motzkin paths, we find combinatorial interpretations of two identities related to the Narayana polynomials and the Catalan numbers, in answer to two problems recently proposed by Coker. AMS Classification: 05A15, 05A19
متن کاملCombinatorial Proofs of Addition Formulas
In this paper we give a combinatorial proof of an addition formula for weighted partial Motzkin paths. The addition formula allows us to determine the LDU decomposition of a Hankel matrix of the polynomial sequence defined by weighted partial Motzkin paths. As a direct consequence, we get the determinant of the Hankel matrix of certain combinatorial sequences. In addition, we obtain an addition...
متن کاملWeighted 2-Motzkin Paths
This paper is motivated by two problems recently proposed by Coker on combinatorial identities related to the Narayana polynomials and the Catalan numbers. We find that a bijection of Chen, Deutsch and Elizalde can be used to provide combinatorial interpretations of the identities of Coker when it is applied to weighted plane trees. For the sake of presentation of our combinatorial corresponden...
متن کاملPath Counting and Random Matrix Theory
We establish three identities involving Dyck paths and alternating Motzkin paths, whose proofs are based on variants of the same bijection. We interpret these identities in terms of closed random walks on the halfline. We explain how these identities arise from combinatorial interpretations of certain properties of the β-Hermite and β-Laguerre ensembles of random matrix theory. We conclude by p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 28 شماره
صفحات -
تاریخ انتشار 2007